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REPRESENTATION OF FRESNEL FUNCTIONS IN
CONTINUED FRACTIONS
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ABSTRACT. The goal of this paper is to provide an efficient method for
computing the Fresnel functions by using the continued fractions with
matrix arguments. We notice that the computation of these functions
imposes many difficulties. Furthermore, we give some numerical exam-
ples which illustrated the theoretical results
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1. INTRODUCTION AND MOTIVATION

Over the last two centuries, the theory of continued fractions has been a
topic of extensive study. The basic idea of this theory over real numbers is
to give an approximation of various real numbers by the rational ones. One
of the main reasons why continued fractions are so useful in computation
is that, in the convergence case, their expansions have the advantage that
they converge more rapidly than other numerical algorithms [2, 6, 8]. So the
extension of continued fractions theory from real numbers to the matrix
and operator case has seen several development and interesting applications
[3,5,11,12].

The Fresnel integrals are fundamental in the theory of physics, they were
originally used in the calculation of the electromagnetic field intensity in an
environment where light bends around opaque objects. More recently, they
have been used in the design of highways and railways, specifically their
curvature transition zones, see track transition curve, [11].

In addition to generating the miraculous Cornu Spiral, the Fresnel integral
can be used to solve the diffraction pattern of a light source through a close
aperture. This is a consequence of the fact that circle waves are of the form
of the light intensity,[1].

The Fresnel cosine and sine integral functions are defined by, (see [2])

# T
Cz) = / cos(50)%dt, =€ C,
0

S(z) = / sin(gt)th, z€C.
We have the symmetry propert?es
C(=2) =C(2), S(=2)=-5(2),
lim C(z)= lim S(z)=1/2.
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Theses functions C(z) and S(z) are related to the error function by

1+4 ™ ) . 1+1 T .
5 crf(§(1—1)2)70(z)—15(z): 5 Crf(§(1+z)z).

The series expansions of C'(z) and S(z) are given by, (see [2])

C(z) +i8(z) =

Oy = 3 VD™

EETES A

k=0
and
S(e) = *f ((—1>k(w/2>2k+1 e

R.
ok+ )k 13" °€

k=0

In this paper, we give the Fresnel integral functions representation as a
sum of continued fractions in the real case and the matrix case.

2. DEFINITIONS AND NOTATIONS

Throughout this paper, M,,(R) will represent algebra of real matrices of
sizes m x m. Throughout this paper, we denote M,, instead of M,,(R).

For any matrices A, B € M,, with B invertible, we write A/B := B~1A,
in particular, if A = I, the identity matrix , then I/B = B~!. It is easy to
verify that for any invertible matrix X we have,

A XA

B XB’
Now, we introduce some topological notions of continued fractions with ma-
trix arguments.
We provide M,,, with the standard induced norm.

Ax
VA€ My 4] = Supasa Tl = Suppajoa 1421,
Let (A,) be a sequence of matrices in M,,, we say that (A,) converges in
M., if there exists a matrix A € M,, such that ||A, — Al tends to 0 when
n tends to +o00. In this case we write, lim,,_, o A, = A.

Definition 2.1. Let (Ay)n>0 and (Byp)n>1 be two sequences of matrices in
M. We denote the continued fraction expansion by

B B; By
A —_— = Ay —, =, ...
0+AJr B, [07A1,A2, ]
! A+ ...

} o or K (B, /Ay),

B
Sometimes, we denote this continued fraction by [AO; A_n
n=1

where

B, 1" B B B,
A;z} —[A;,,...,]
[ 0 Az i=1 0 Al AQ An



Representation of fresnel functions in continued fractions

P, B; "
The fractions Q—" = {Ao; —l} is called the the n'" convergent of the
n ili=1

continued fraction K (By/Ap).

The continued fraction [AO, is said to be convergent in My, if the

k}

A | =1
sequence (Pn/Qu)n = (Q; 1 Pp)n converges in My, in the sense that there
exists a matriz F € My, such that lim,_, 1 || Fy, — F|| = 0. In this case, we

denote N
B o0
F = Ay =" .

|: OaA :|

nlin=1

We note that the evaluation of the n® convergent according to Defini-
tion ?7? is not practical because we have to repeatedly invert matrices. The
following proposition gives an adequate method to calculate K (B, /A;).

Proposition 2.2. For the continued fraction K (B, /A,), define

Pi=1 P=4 Py=A, Py 1+ ByPy 2
’ d > 1.
{ Q1=0,Q=I """\ Qu=4,Qu1+BuQn> "~
Then the matriz P,/Q,, is the n'" convergent of K (B, /A).
Proof. This can be done by induction. O

Theorem 2.3. [11]. Let (A,), (By) be two sequences of My,. If
|| (ng,Q...BQ)_lAQ_klilBQkfl...Bl ||§ «
and
|(Bag—1...B1) "' Ay} Boy...Bs|| < B

forallk > 1, where 0 < a < 1,0 < 8 <1 and aff < 1/4, then the continued
fraction K(By/Ay) converges in M.

To end this section, We need to present the following Propositions.

Proposition 2.4. [8]. Let C € M,, such that ||C|| < 1, then the matriz
I — C is invertible and we have
1

1—llelr

Proposition 2.5. [2]. If the function f(x) can be expanded in a power
series in the interval | x — zg |< 1, as

(1= <

“+oo
f@) =) apla —zo),
p=0

then this expansion remains valid when the scalar argument x is replaced by
a matriz A whose characteristic value belong to the interval of convergence.
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3. MAIN RESULTS

3.1. Continued fractions expansions of Fresnel integral functions.
This section is devoted to give representations of the Fresnel integral func-
tions as a sum of continued fractions in real and matrix cases.

3.1.1. Real case.

Theorem 3.1. (i) Let x be a real number, a representation of Fresnel
cosine integral function as a sum of continued fractions is

B B LI T e
(I){x’ 0 ’(4n+1>A%n—<7r/2>2<4n—3>x4L:2'

(i) Let x be a real number, a representation of Fresnel sine integral func-
tion as a sum of continued fractions is

S(z) = [%3; *(W/2)3a:77 (m/2)2A2, | (4n —1)%z* :|+oo
6 42 (4n + E})zﬁl%m_1 —(/2)%(4n — 1)z

k=2
In order to prove Theorem 3.1, we give the following lemmas.

Lemma 3.2. [6] Let g be a function with Taylor series expansion in an
interval I C R is

—+o00
g(y) =Y bwy.
k=0

Then, the development in continued fractions of g(y) is given by

biy  —byy  —bibs  —bnobuy ]
1 b1 +boy bo+ b3y by—14+bpy ),y

9(y) = |bo;

The following lemma characterizes equivalence of continued fractions.

Lemma 3.3. [5]. Let (r,) be a non-zero sequence of real numbers. Then,
one has

g eee

by by bn | by mariby mprnoaby
0y — 5 T ey yeoo | = | Q03 ’ [RRE)

ay a2 Qn riayp 1202 TnGn
We recall that the cosine Fresnel integral function is given by
too (_1)k T ok k1

Cla) = k12 (2h)

and
1.47L+3

TZan+32) (2n+1)
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Proof. (of theorem 3.1.)

(i) The Fresnel integral function C'(z) can be written as

X OGP G
C0) =22 G v D" ™ @ 1)

n=0

Let y = z*, from the last formulae, we deduce

—(7/2)%y —(m/2)%y
bo=1, 00 _ 5.2 by 94l
"1 1 " by + boy (E)4y
2
by + —=—
419
|
Let AF = L, for all k < n. For n > 3, we get
(n—k)!
; ; _ (_1)n72(%)2n74 (_1)71(%)271 _ (%)4n74
2V = on — ) (4n —7) @n)l(dn+ D)7 T (2n— 4)N2AL (dn - 1)(An+ 1)

Furthermore, we have

(=D (m/2)> 72 (=)™ (n/2)*"
2n—2)(4n—3) ' 2n)!@n+1)”
(-1 (/2

= @@t D —3) A+ 1) = (1/2)%(4n = 3)y).

bp_1+byy =

Then, we obtain

—(r/2)"y
—bp—2bpy (2n — 4)1)2A3, (4n — T)(4n + 1)

= “1\yn—1(7/2)2n—2 ’
b1+ by (2;)!1()471 +( 1; (Qin 5 (43,(4n + 1) = (7/2)2(4n = 3))

Therefore, the continued fraction expansion of C(z) is

—(m/2)? ) —(m/2)*a*
o) = |1 215 419
e [1’ UTGRE, Gy
215 419
—(m/2)" "y o
(2n — )N2AL (4n —7)(4n + 1) ]
(=) Y(r/2)* 2 n=3

(2n)!(4n + 1)(4n - 3) <A3n<4” +1) = (7/2)?(4n — 3)y>

Let us define the sequence (ry,)n>1 by

rn = 10,

(4n = 3)(2n)!(4n + 1) Then, we found
n — ’ > 2. ’

{ P E
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rie _ —(m/2)%
T‘1d1 o 10 ’
TnTn-1Cn (m/2)2A43, o(4n — 3)%y 09
Tndn  (An+1)A3 — (7/2)2(4n—3)y’  — 7
Finally, we obtain

C _ . 7(71-/2)21‘5 (71—/2)21437172(4” - 3)2y oo
(@) =|m— (dn+ DAL, — (7/2)2(4n — 3)y ] ,_,’

which finish the proof of (7).

(ii) We prove it by a similar method of (¢). We have

NG ()G
S0 = G T G i

E)2n+1

So, we have

R . —(n/2)% ~(r/2)%
poT My _ 7l Yoo by sl 13
6" 1 1 b+ by —(m/2 7/2)°%y  —(mw/2 ’
-l o nC RLLL Y
So, for all n > 3, we get
—(m/2)"" 2y
—bp_obny (2n + 1)!(2n — 3)!(4n — 5)(4n + 3)
A o\ Ll G |
T @ e 53 e dn 3 - e = 1)(w/22%)
Therefore, the continued fraction expansion of S(z) becomes
/2, ~(x/2)%
S(z) —g® | T 73! 11.5!
(x) x 6’ 1 ) _(7_[_/2)3 ) ) )
Ll (1142~ T(n/2)2)
~(x/2)""? o~
(2n + D)!(2n — 3)1(4n — 5)(4n + 3) ]
n=3

_1\n—1 T 2n—1
(Zn(—i- 11))'(4n(—/12))(4n +3) <A§n+1(4n T3~ - 1)(7r/2)2y>

In order to simplify the previous expansion of S(z), let

, , 2n+1)l(dn+3)(4n —1
ry = 7.3, ’I“n:( :_1;1571(;/2))(%71 ),nZQ.
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By applying the Lemma 3.3, with the following transformations
HCr_ —(m/2)a
Tld/ 7.30 7
ThTn—1Ch A3,y (4n —1)%(n/2)%a*

rhd, A3 (dn+3) — (n/2)%(4n — 1)t

we complete the proof of (i7).

3.1.2. Matriz case.

Definition 3.4. Let A be a matriz in M,,, we define the Fresnel integral
functions of matriz A by the expressions

A4k+1

Z 4/<; 1 2)% (2k)!

and

—+o00
_ (D)™ T gy AT
S(A)_;)4n+3(2) (2n+ 1)

Theorem 3.5. Let A be a matriz of My, such that || A ||= «, where o € R
1
and 0 < o < 3
(i) The matriz continued fraction
DT/ (n)2P A, ,(dn—3)At 7T
101 T (An+1)A3, 1 — (7/2)%(4n — 3) A4

converge in M. Furthermore, this continued fraction represents the
function C(A). So, we have

245 242 _ 9)\2 44 +00
C(A) = [A; _(W{(?; - " (4n +(7T1/)2zi§;412n—_?7(r4/2)2(1f—13)z14]
(i) The matriz continued fraction
[z 5. —(m/2)3A7 (m/2)2A43,_ (4n — 1)24" ]+°°
67 421 (4n+3)A5, T — (1/2)%(4n - 1)AY]

converge in M,. Furthermore, this continued fraction represents the
function C(A). So, we have

—(r/2)° A7 (w/2>2A%n 1(4n — 1)%4*
421 (471 + 3) 2n+1 (71—/2) (4n - 1)A4 n=2

I

n=2

n=2

—+o0

S(A) = {%Ai‘

Proof. (i) We keep the same notations as in Theorem 3.5. In order to prove
the convergence of the continued fraction K(Cy/Dy) with

C, = —(m/2)%24%,
D; =101,

315
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and for k > 2,

Cp = (m/2)2A3,_,(4k — 3)? A%,
{ Dy = (4k +1)A% T — (m/2)?(4k — 3) A%,

We should verify that the conditions of Theorem 2.3 are satisfied. One
has

- —(m/2)? -
1015 1= It gz A°A™ 1< 41,

for k > 1, we obtain

(7/2)° A3, _(8k—7)
(n/27 43, ,(8k— 3)

2
1Cak—1Co, = || ;AT <1

and

D31 || = [I((8k — 3) ALy oI — (m/2)*(8k — T)A)7!|
_ 1 (m)*(8k —T) 4\
T (8k—3)42, I = (8k — 3)A§k_2A4) L

(m/2)%(8k —7) 4 _

(8k —3)A%,_, A7

< -

Since the factors of the product (Cgk,g...Cg)’lDQ_kl_l(Cgk,g...Cl) com-
mute between them, so

1(Cat—2--.C2) " Doyl (Cats-. C1) | = [(CLOF)..(Con—3Ciyy) Do |
< ||A(I _ (71—/2)2(8k — 7)A4)_1'H
- (8k — B)AZk_2

According to Proposition 2.4 and the fact that

2)2(8k —
im (77/ ) (8k2 7) HA4||:0,
k—+o0 (8k — 3)Aj,_,

we obtain for all sufficiently large k

(m/2)*(8k —7)

1(Car—2-..C2) " D (Cop—s-. O < AN — (Sh—3)A2,_,

AHTY

1
<A
(8k —3)A%;_,
1
< [lAll< 5.
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To prove the second inequality of Theorem 2.3, we have
[(Cok—1...C5) Dy (Cope...Co) || = [[(C2C5 ). (Cop—2Ct 1) Cor Doyl |

(m/2)? A%, (8k — 3)? (/2)%(8k —3) 4. _
S, M T,

1
< ||A4*
= || Hli (W)Q(Sk_3)”A4H
(8k +1)A3,
<A< 2
2

which complete the proof of (i). We study the convergence of the con-
tinued fraction K(C},/Dj) with
c;/ = —(1/2)%A7,
D, =421,
and for all k£ > 2,
C, = (m/2)2A3,_ (4k —1)24%,
D, = (4k+3)A3, T — (n/2)*(4k — 1) A%
We prove (7i) by the same method as below. We have

[(CopgerCa) ' Dot (Cop_gen O = [(C1C5 ) (Co_sCo o) D |

1 , (7/2)%(8k —5) 4. _
[ —| LT Rl Ay L
@A, M w4

1
< || A3
= H ||1_ (W/2)2(4k_5)||A4H
(8k —1)A3,_,

< [lAP< L

2

We also have

1(Cp1-+-C5) " Dy (Co CH) | = [(CHC ™) (Copa Ot ) Co D |
(m/2)%A%,_ | (8k —1)2 (7/2)%(8k — 1)

< |A*(1 - AHTY|
(8k + 3)Aik+1 (8k + i%)A?Uc+1
1
< [1AY)
L @/2PEk -1
(8K + 3) A2 1A%
4k+1
1
< i< 2,
< JAlI*< 5

hence the proof of (ii).
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4. NUMERICAL APPLICATIONS

In this section, we present some numerical examples of our theoretical
results, beginning by real case

Example 4.1.

TABLE 1. The following table clarifies the differences be-
tween the Fresnel integral function C(z) and its convergents
when Applying the (i) of theorem 3.1.

x |[(C—F)(@) | (C—F)() | (C-F)(@) | (C—F)) | (C - F)(z)
0.05| -5.50e-14 | 1.95e-20 | -4.12e-27 | 5.72e-34 | -5.6le-dl
0.1 | -28le-11 | 1.60e-16 | -5.400-22 | 1.200-27 | -1.88¢-33
02 | -1.44e8 1.31e-12 | -7.08¢-17 | 2.5le21 | -6.32e-26
05 | -5.48¢5 1.95¢:7 | -4.11e-10 | 5.71e-13 | -5.61e-16
0.75 | -2.07e-3 3.77e-5 -4.03e-7 2.84e-9 TATe-11

1 | -2.66¢-2 1.55¢-3 -5.28¢-5 1.18¢-6 -1.86¢-8

Example 4.2.

TABLE 2. The following table clarifies the differences be-
tween the Fresnel integral function S(z) and its convergents
when applying the (i¢) of theorem .1.

x | (S=F)(@) | (S—F)(z) | (S—F5)(x) | (S— Fu)(z) | (S—F5)(x)
0.05 | -3.53e-17 9.52e-24 -1.61e-30 1.86e-37 -1.57e-44
0.1 -7.24e-14 3.12e-19 -8.44e-25 1.56e-30 -2.10e-36
0.2 -1.48e-10 1.02e-14 -4.42e-19 1.31e-23 -2.82e-28
0.5 -3.52e-6 9.50e-9 -1.60e-11 1.86e-14 -1.56e-17
0.75 -3.01le-4 4.13e-6 -3.54e-8 2.08e-10 -8.89%e-13

1 -6.94e-3 3.03e-4 -8.28e-6 1.54e-7 -2.08e-9

Now we pass to the matrix case,

we illustrate the theoretical results ob-

tained in the theorem 3.5, we start with an example of the matrix function

C(4)
Example 4.3. let A be an 3 X 3 matriz such that
1 1 1
4 16 8
Ao L1
16 4 16
1 1 1
8 16 4

The norm of A is ||All = 0.4375, it is of course strictly less than 1/2. By
applying the theoretical results obtained in the theorems 3.4 the difference
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between the fresnel integral function of matriz C(A) and S(A) and its con-
vergents respectably is given by

(Fi— C)(4) =
(F— O)(4) =
(Fy — C)(A) =
(Fi— C)(4) =
(F5 — O)(4) =
(Fy — 5)(4) =
(Fy — §)(4) =
(Fs — $)(4) =
(Fi — 5)(4) =
(F5 — $)(4) =

—4.58¢ —6 —3.35e—6 —4.58¢—6
—3.35e —6 —2.47¢e—6 —3.35e—6 |,
—4.58¢ —6 —3.35e—6 —4.58¢—6

8.18¢—9 5.9% -9 8.18e -9
5.99¢ -9 4.38¢—-9 599% -9 |,
8.18¢—9 5.99¢—-9 8.18¢—9

—8.65e —12 —6.33¢ — 12 —8.65¢ — 12
—6.33e — 12 —4.63e —12 —6.33e —12 |,
—8.65e —12 —6.33e —12 —8.65¢ — 12

6.0le — 15 4.40e — 15 6.0le — 15
4.40e — 15 3.22¢ —15 4.40e—-15 |,
6.0le — 15 4.40e —15 6.0le —15

—2.96e — 18 —2.16e — 18 —2.96e — 18
—2.16e — 18 —1.58¢ — 18 —2.16e — 18
—2.96e — 18 —2.16e — 18 —2.96e — 18
—2.08¢e —7 —152e—7 —2.08e—7
—1.52e—7 —112e—-7 —-152¢e—-7 |,
—2.08e -7 —152e—-T7 —2.08c—7

2.81e —10 2.06e —10 2.81le—10
2.06e — 10 1.51e —10 2.06e—10 |,
2.81e — 10 2.06e — 10 2.81e —10

—2.3% —13 —-1.75e¢—-13 —2.3% —13
—-1.75¢ =13 —128¢—-13 —-1.75%e¢—-13 |,
—2.3% —13 —-1.75e—-13 —2.39e¢—13

1.38¢ —16 1.0le—16 1.38¢ — 16
1.0le —16 7.44e—17 1.0le—16 |,
1.38¢ —16 1.0le—16 1.38¢ — 16

—5.86e —20 —4.29¢ —20 —5.86e — 20
—4.29¢ — 20 —3.14e —20 —4.29¢ —20
—5.86e —20 —4.29¢ —20 —5.86e — 20

The results established above show that the continued fraction algorithm
converges very quickly. Indeed for the integral cosine C(A) we gained 5
places since the first iteration and so on. This shows the importance of this

approach.
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